p-group, metabelian, nilpotent (class 2), monomial
Aliases: C23.83C23, (C2×C4).5Q8, (C2×C4).20D4, C22.76(C2×D4), C22.25(C2×Q8), C2.8(C4.4D4), C2.11(C22⋊Q8), C2.5(C42.C2), C2.6(C42⋊2C2), C22.43(C4○D4), (C22×C4).28C22, C2.C42.10C2, C2.10(C22.D4), (C2×C4⋊C4).11C2, SmallGroup(64,81)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.83C23
G = < a,b,c,d,e,f | a2=b2=c2=1, d2=f2=a, e2=ba=ab, ac=ca, ede-1=ad=da, ae=ea, af=fa, bc=cb, fdf-1=bd=db, be=eb, bf=fb, cd=dc, fef-1=ce=ec, cf=fc >
Subgroups: 109 in 67 conjugacy classes, 35 normal (15 characteristic)
C1, C2, C2, C4, C22, C22, C2×C4, C2×C4, C23, C4⋊C4, C22×C4, C22×C4, C2.C42, C2.C42, C2×C4⋊C4, C23.83C23
Quotients: C1, C2, C22, D4, Q8, C23, C2×D4, C2×Q8, C4○D4, C22⋊Q8, C22.D4, C4.4D4, C42.C2, C42⋊2C2, C23.83C23
Character table of C23.83C23
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | 4N | |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | -2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | -2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ12 | 2 | -2 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ13 | 2 | -2 | -2 | 2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | -2i | complex lifted from C4○D4 |
ρ14 | 2 | -2 | 2 | 2 | 2 | -2 | -2 | -2 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ15 | 2 | 2 | -2 | -2 | 2 | 2 | -2 | -2 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ16 | 2 | -2 | -2 | -2 | 2 | -2 | 2 | 2 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ17 | 2 | -2 | 2 | 2 | 2 | -2 | -2 | -2 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ18 | 2 | 2 | -2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | complex lifted from C4○D4 |
ρ19 | 2 | -2 | -2 | 2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 2i | complex lifted from C4○D4 |
ρ20 | 2 | 2 | -2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | complex lifted from C4○D4 |
ρ21 | 2 | 2 | -2 | -2 | 2 | 2 | -2 | -2 | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ22 | 2 | -2 | -2 | -2 | 2 | -2 | 2 | 2 | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 9)(2 10)(3 11)(4 12)(5 39)(6 40)(7 37)(8 38)(13 41)(14 42)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 49)(22 50)(23 51)(24 52)(25 55)(26 56)(27 53)(28 54)(29 59)(30 60)(31 57)(32 58)(33 62)(34 63)(35 64)(36 61)
(1 53)(2 54)(3 55)(4 56)(5 52)(6 49)(7 50)(8 51)(9 27)(10 28)(11 25)(12 26)(13 31)(14 32)(15 29)(16 30)(17 36)(18 33)(19 34)(20 35)(21 40)(22 37)(23 38)(24 39)(41 57)(42 58)(43 59)(44 60)(45 61)(46 62)(47 63)(48 64)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 19 11 45)(2 18 12 48)(3 17 9 47)(4 20 10 46)(5 58 37 30)(6 57 38 29)(7 60 39 32)(8 59 40 31)(13 51 43 21)(14 50 44 24)(15 49 41 23)(16 52 42 22)(25 61 53 34)(26 64 54 33)(27 63 55 36)(28 62 56 35)
(1 43 3 41)(2 16 4 14)(5 20 7 18)(6 45 8 47)(9 15 11 13)(10 44 12 42)(17 38 19 40)(21 36 23 34)(22 62 24 64)(25 31 27 29)(26 58 28 60)(30 56 32 54)(33 52 35 50)(37 46 39 48)(49 61 51 63)(53 59 55 57)
G:=sub<Sym(64)| (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,9)(2,10)(3,11)(4,12)(5,39)(6,40)(7,37)(8,38)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,55)(26,56)(27,53)(28,54)(29,59)(30,60)(31,57)(32,58)(33,62)(34,63)(35,64)(36,61), (1,53)(2,54)(3,55)(4,56)(5,52)(6,49)(7,50)(8,51)(9,27)(10,28)(11,25)(12,26)(13,31)(14,32)(15,29)(16,30)(17,36)(18,33)(19,34)(20,35)(21,40)(22,37)(23,38)(24,39)(41,57)(42,58)(43,59)(44,60)(45,61)(46,62)(47,63)(48,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,19,11,45)(2,18,12,48)(3,17,9,47)(4,20,10,46)(5,58,37,30)(6,57,38,29)(7,60,39,32)(8,59,40,31)(13,51,43,21)(14,50,44,24)(15,49,41,23)(16,52,42,22)(25,61,53,34)(26,64,54,33)(27,63,55,36)(28,62,56,35), (1,43,3,41)(2,16,4,14)(5,20,7,18)(6,45,8,47)(9,15,11,13)(10,44,12,42)(17,38,19,40)(21,36,23,34)(22,62,24,64)(25,31,27,29)(26,58,28,60)(30,56,32,54)(33,52,35,50)(37,46,39,48)(49,61,51,63)(53,59,55,57)>;
G:=Group( (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,9)(2,10)(3,11)(4,12)(5,39)(6,40)(7,37)(8,38)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,55)(26,56)(27,53)(28,54)(29,59)(30,60)(31,57)(32,58)(33,62)(34,63)(35,64)(36,61), (1,53)(2,54)(3,55)(4,56)(5,52)(6,49)(7,50)(8,51)(9,27)(10,28)(11,25)(12,26)(13,31)(14,32)(15,29)(16,30)(17,36)(18,33)(19,34)(20,35)(21,40)(22,37)(23,38)(24,39)(41,57)(42,58)(43,59)(44,60)(45,61)(46,62)(47,63)(48,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,19,11,45)(2,18,12,48)(3,17,9,47)(4,20,10,46)(5,58,37,30)(6,57,38,29)(7,60,39,32)(8,59,40,31)(13,51,43,21)(14,50,44,24)(15,49,41,23)(16,52,42,22)(25,61,53,34)(26,64,54,33)(27,63,55,36)(28,62,56,35), (1,43,3,41)(2,16,4,14)(5,20,7,18)(6,45,8,47)(9,15,11,13)(10,44,12,42)(17,38,19,40)(21,36,23,34)(22,62,24,64)(25,31,27,29)(26,58,28,60)(30,56,32,54)(33,52,35,50)(37,46,39,48)(49,61,51,63)(53,59,55,57) );
G=PermutationGroup([[(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,9),(2,10),(3,11),(4,12),(5,39),(6,40),(7,37),(8,38),(13,41),(14,42),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,49),(22,50),(23,51),(24,52),(25,55),(26,56),(27,53),(28,54),(29,59),(30,60),(31,57),(32,58),(33,62),(34,63),(35,64),(36,61)], [(1,53),(2,54),(3,55),(4,56),(5,52),(6,49),(7,50),(8,51),(9,27),(10,28),(11,25),(12,26),(13,31),(14,32),(15,29),(16,30),(17,36),(18,33),(19,34),(20,35),(21,40),(22,37),(23,38),(24,39),(41,57),(42,58),(43,59),(44,60),(45,61),(46,62),(47,63),(48,64)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,19,11,45),(2,18,12,48),(3,17,9,47),(4,20,10,46),(5,58,37,30),(6,57,38,29),(7,60,39,32),(8,59,40,31),(13,51,43,21),(14,50,44,24),(15,49,41,23),(16,52,42,22),(25,61,53,34),(26,64,54,33),(27,63,55,36),(28,62,56,35)], [(1,43,3,41),(2,16,4,14),(5,20,7,18),(6,45,8,47),(9,15,11,13),(10,44,12,42),(17,38,19,40),(21,36,23,34),(22,62,24,64),(25,31,27,29),(26,58,28,60),(30,56,32,54),(33,52,35,50),(37,46,39,48),(49,61,51,63),(53,59,55,57)]])
C23.83C23 is a maximal subgroup of
C42.162D4 C42.163D4 C23.301C24 C42.34Q8 C24.563C23 C23.321C24 C24.567C23 C24.569C23 C23.344C24 C23.346C24 C23.350C24 C23.353C24 C24.278C23 C23.369C24 C24.289C23 C24.572C23 C23.375C24 C23.377C24 C24.573C23 C23.388C24 C24.301C23 C23.392C24 C24.577C23 C23.395C24 C23.396C24 C23.397C24 C23.405C24 C23.406C24 C23.408C24 C23.409C24 C23.410C24 C23.411C24 C23.414C24 C24.309C23 C23.416C24 C23.420C24 C23.424C24 C23.425C24 C23.426C24 C24.315C23 C23.428C24 C23.429C24 C23.430C24 C23.432C24 C23.433C24 C23.458C24 C24.331C23 C42.172D4 C42.177D4 C24.584C23 C42.36Q8 C42.37Q8 C23.472C24 C23.473C24 C24.339C23 C24.341C23 C23.478C24 C42.179D4 C23.485C24 C24.345C23 C23.488C24 C24.346C23 C23.490C24 C23.493C24 C24.347C23 C23.496C24 C24.348C23 C42⋊22D4 C42.184D4 C42⋊8Q8 C42.185D4 C42⋊9Q8 C42.187D4 C42.191D4 C23.535C24 C42⋊30D4 C42.195D4 C23.543C24 C23.545C24 C23.546C24 C42.39Q8 C23.548C24 C24.375C23 C23.550C24 C24.376C23 C23.554C24 C23.555C24 C42.198D4 C24.379C23 C42⋊11Q8 C24.394C23 C24.395C23 C23.589C24 C23.590C24 C23.593C24 C23.595C24 C24.403C23 C24.405C23 C23.602C24 C23.603C24 C23.608C24 C23.613C24 C23.616C24 C23.618C24 C23.619C24 C23.620C24 C23.625C24 C24.420C23 C24.421C23 C24.426C23 C24.427C23 C23.641C24 C24.428C23 C23.643C24 C24.430C23 C23.645C24 C24.432C23 C23.647C24 C23.649C24 C24.435C23 C23.651C24 C24.437C23 C23.654C24 C23.655C24 C23.658C24 C23.662C24 C23.663C24 C23.664C24 C24.443C23 C23.666C24 C23.667C24 C23.669C24 C24.445C23 C23.671C24 C23.672C24 C23.673C24 C23.674C24 C23.675C24 C23.676C24 C23.677C24 C23.678C24 C23.679C24 C24.448C23 C23.681C24 C23.682C24 C23.683C24 C24.450C23 C23.687C24 C23.688C24 C23.689C24 C24.454C23 C23.691C24 C23.693C24 C23.694C24 C23.695C24 C23.696C24 C23.698C24 C23.699C24 C23.702C24 C24.456C23 C23.705C24 C23.707C24 C23.709C24 C23.710C24 C24.459C23 C42.200D4 C42.201D4 C23.724C24 C23.726C24 C23.727C24 C23.728C24 C23.731C24 C23.732C24 C23.733C24 C23.735C24 C23.736C24 C23.737C24 C23.738C24 C23.739C24 C23.741C24 C42⋊12Q8 C42⋊13Q8
(C22×C4).D2p: (C2×C4).Q16 C4⋊C4.18D4 C4⋊C4.19D4 C4⋊C4.20D4 C23.295C24 C24.576C23 C24.300C23 C23.398C24 ...
C23.83C23 is a maximal quotient of
(C2×C4p).D4: C42.32Q8 C22⋊C4.Q8 (C2×C4).17D12 (C2×C12).288D4 (C2×C12).55D4 (C2×C20).28D4 (C2×C20).288D4 (C2×C20).55D4 ...
(C22×C4).D2p: C24.631C23 C24.632C23 C24.633C23 C24.635C23 (C2×C4).28D8 (C2×C4).23Q16 C4⋊C4.Q8 (C2×Dic3).9D4 ...
Matrix representation of C23.83C23 ►in GL6(𝔽5)
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
3 | 3 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 4 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
3 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 |
0 | 0 | 2 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 3 |
0 | 0 | 0 | 0 | 0 | 2 |
2 | 0 | 0 | 0 | 0 | 0 |
1 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 3 | 4 |
G:=sub<GL(6,GF(5))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[3,0,0,0,0,0,3,2,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,4,1],[1,3,0,0,0,0,0,4,0,0,0,0,0,0,0,2,0,0,0,0,3,0,0,0,0,0,0,0,3,0,0,0,0,0,3,2],[2,1,0,0,0,0,0,3,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,3,0,0,0,0,0,4] >;
C23.83C23 in GAP, Magma, Sage, TeX
C_2^3._{83}C_2^3
% in TeX
G:=Group("C2^3.83C2^3");
// GroupNames label
G:=SmallGroup(64,81);
// by ID
G=gap.SmallGroup(64,81);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,2,48,121,151,362,332,50]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=1,d^2=f^2=a,e^2=b*a=a*b,a*c=c*a,e*d*e^-1=a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,f*d*f^-1=b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,f*e*f^-1=c*e=e*c,c*f=f*c>;
// generators/relations
Export